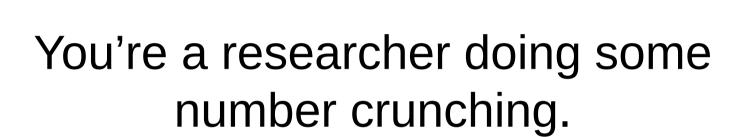
Accelerating massively parallel .NET code using FPGAs with Hastlayer

GPU Day, 20.06.2022

Zoltán Lehóczky @ Lombiq


be the hardware

Let's talk about you!

Number crunching like in...

- Artificial intelligence, machine learning
- Image and video processing, computer vision
- Fast Fourier transform
- Monte Carlo simulation
- Data compression

- Profile and optimize it
- Parallelize it
- Use faster and/or more hardware

- Profile and optimize it
- Parallelize it
- Use faster and/or more hardware

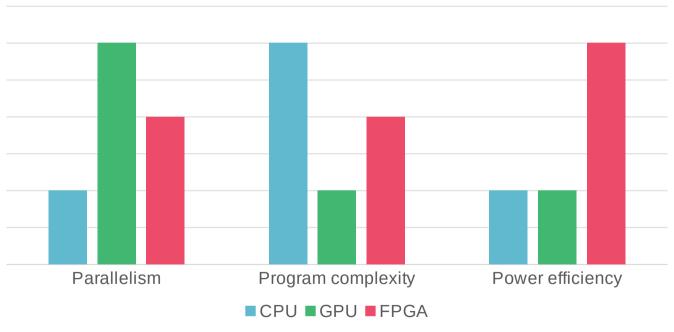
- Profile and optimize it
- Parallelize it
- Use faster and/or more hardware

- Profile and optimize it
- Parallelize it
- Use faster and/or more hardware

- Profile and optimize it
- Parallelize it
- Use faster and/or more hardware
- ...

- Profile and optimize it
- Parallelize it
- Use faster and/or more hardware
- Use heterogeneous computing: GPUs, FPGAs...

Let's explore the last part a bit.


FPGAs?

- Field-Programmable Gate Array
- Can behave like any other chip (with limitations)

Can dynamically be "re-wired"

CPU vs GPU vs FPGA

CPU vs GPU vs FPGA

What's Hastlayer?

computer program → FPGA logic

.NET (C#, VB, C++, F#, Python, PHP, JavaScript...) → FPGA logic

But why .NET?

- Modern development tools
- Huge community
- Open-source

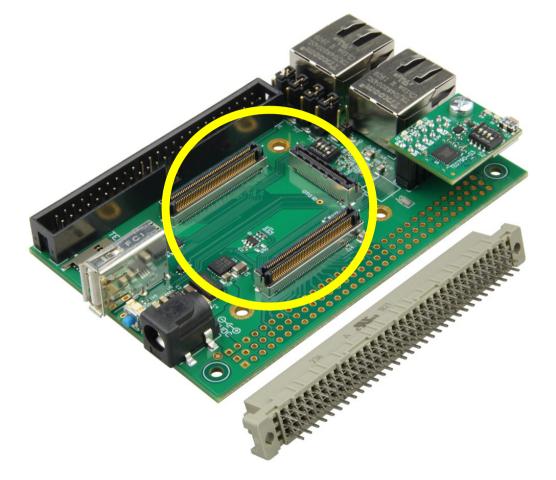
The benefits of FPGAs for us all

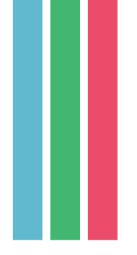

- Performance increase for parallel computebound algorithms
- Higher power efficiency
- Still only software development

Demo: Hands-on Hastlayer



What's under the hood?





Demo: Peek into the hardware

What else?

Xilinx Vitis support

- High-performance datacenter accelerator cards
- In all major cloud providers or on-premises
- Aerospace industry, on board of drones and satellites

Xilinx Alveo benchmarks

Algorithm	Speed advantage	Power advantage
ImageContrastModifier	34x	120x
MonteCarloPiEstimator	4x	21x
ParallelAlgorithm	4x	25x

https://github.com/Lombiq/Hastlayer-SDK/blob/dev/Docs/Benchmarks.md

Xilinx Zynq benchmarks

Algorithm	Speed advantage	Power advantage
ImageContrastModifier	24x	27x
MonteCarloPiEstimator	110x	154x
ParallelAlgorithm	119x	115x

https://github.com/Lombiq/Hastlayer-SDK/blob/dev/Docs/Benchmarks.md

Posit number format

- https://hastlayer.com/arithmetics
- Better range/accuracy than IEEE float
- We already have a posit "processor"

And you!

- Thesis work where you write new code
- Optimizing existing scientific code
- Aerospace applications

Wrapping up

I like this, how do I start?

- Check out the SDK: https://github.com/Lombiq/Hastlayer-SDK/
- Be ready for an FPGA-filled future!

Are you ready to *be* the hardware?

- zoltan.lehoczky@hastlayer.com
- https://hastlayer.com
- https://github.com/Lombiq/Hastlayer-SDK/
- https://lombiq.com

